
 1

A CONCEPTUAL DESIGN FOR A RELIABLE OPTICAL BUS (ROBUS)

Paul S. Miner, Mahyar Malekpour, and Wilfredo Torres

 NASA Langley Research Center, Hampton, VA

{p.s.miner, m.r.malekpour, w.torres-pomales}@larc.nasa.gov

Abstract
 The Scalable Processor-Independent

Design for Electromagnetic Resilience (SPIDER) is
a new family of fault-tolerant architectures under
development at NASA Langley Research Center
(LaRC). The SPIDER is a general-purpose
computational platform suitable for use in ultra-
reliable embedded control applications. The design
scales from a small configuration supporting a
single aircraft function to a large distributed
configuration capable of supporting several
functions simultaneously. SPIDER consists of a
collection of simplex processing elements
communicating via a Reliable Optical Bus
(ROBUS). The ROBUS is an ultra-reliable, time-
division multiple access broadcast bus with strictly
enforced write access (no babbling idiots) providing
basic fault-tolerant services using formally verified
fault-tolerance protocols including Interactive
Consistency (Byzantine Agreement), Internal Clock
Synchronization, and Distributed Diagnosis. The
conceptual design of the ROBUS is presented in
this paper including requirements, topology,
protocols, and the block-level design. Verification
activities, including the use of formal methods, are
also discussed.

Introduction
The Scalable Processor-Independent Design

for Electromagnetic Resilience (SPIDER) is a
general-purpose fault-tolerant architecture being
designed at NASA Langley Research Center to
support laboratory investigations into various
recovery strategies from transient failures caused by
electromagnetic effects. The core of the SPIDER
architecture is the Reliable Optical Bus (ROBUS).
As part of an effort partially sponsored by the FAA,
the ROBUS is being developed in accordance with

RTCA DO-254: Design Assurance Guidance for
Airborne Electronic Hardware.

The SPIDER is a family of general-purpose
computational platforms suitable for use in ultra-
reliable embedded control applications. Towards
this end, the design is intended to scale from a small
configuration supporting a single aircraft function
to a moderately large configuration capable of
supporting several functions simultaneously. The
computational platform is suitable for use for any
safety-critical (Level A) aircraft function.

SPIDER Overview
The SPIDER architecture is intended to

support a collection of N simplex general purpose
Processing Elements (PEs) communicating over a
Reliable Optical Bus (ROBUS). One logical view
of the SPIDER Architecture is depicted in Figure 1.

3
4

0
1

2

7

6

5

ROBUS

Figure 1: SPIDER Logical View

The ROBUS logical behavior is a time-
division multiple access (TDMA) broadcast bus. In
order to guarantee reliable communication among
the good PEs, the bus needs to be protected against
any bad PE monopolizing its capacity.
Furthermore, the communication model must

 2

support several fundamental services. The essential
goal is to ensure reliable communication between
all pairs of fault-free PEs in the system. This will
enable the development of several fault-tolerance
strategies combining the individual PEs. For
example, Figure 2 illustrates a SPIDER
configuration with three PEs in a Triple Modular
Redundant (TMR) configuration, four PEs in a
dual-dual configuration and a single simplex PE.

0 4 21 3 56 7

ROBUS

Figure 2: Sample SPIDER Configuration

ROBUS Requirements
The ROBUS must provide the following

capabilities:

1. All good nodes will observe an identical
sequence of messages on the ROBUS

2. The ROBUS will provide a reliable time
reference for all attached nodes

3. The ROBUS will provide correct and
consistent diagnostic information to all
attached nodes

4. For a 10 hour mission,

P(ROBUS Failure) < 10-10

The first three requirements are desirable
functional characteristics of a reliable bus. The
final requirement is motivated by the fact that the
ROBUS may support communication for several
functions whose failure could be catastrophic.
Since the bus should not be a dominant source of
failure, we have set the reliability requirement to be
significantly greater than would be required for any
aircraft function. Rushby presents a comparison of
several architectures with similar requirements [1].

Allocation of Requirements
In this section, we address the implications

these requirements have on the available design
choices. Requirement 4 implies that the ROBUS
will have internal redundancy. It is not possible to

meet this reliability goal without replication. This
implies that all of the other services must be
guaranteed in the presence of a bounded number of
internal ROBUS component failures.

Reliability
In order to satisfy Requirement 4, we have

constructed semi-Markov models that use the same
fault assumptions as the fault-tolerance protocols.
Death states in the Markov models correspond to
violations of fault assumptions.

Fault Assumptions
There are at least two approaches to reasoning

about faults and failures in a digital system. One is
to postulate possible component failures and then
assess the resulting impact on the system.
Alternatively, one may assume that all faults have
potentially devastating consequences and then
design the system relative to this worst case
assumption. Our approach is closer to the latter, but
we will allow some variation into the potential
impact of faults. We have modified the fault-
classification strategy used in the development of
the Multiprocessor Architecture for Fault-Tolerance
(MAFT) [2]. Faults are classified based on the
observable characteristics to other nodes within the
system. The system is partitioned into Fault
Containment Regions (FCR) that ensure
independence of random physical failures. The
failure status of an FCR is then one of four mutually
exclusive possibilities:

• A good node behaves according to specification
• A benign faulty node only sends messages that

are detectably faulty, including nodes that have
failed silent

• A symmetric faulty node may send arbitrary
messages, but does so the same way to each
receiver

• An asymmetric faulty node may send different
arbitrary messages to different receivers

This provides a global classification of the

fault status of a collection of nodes. This
classification is useful for the analysis of the
various fault-tolerant protocols in the system.
However, the protocols themselves cannot have
complete knowledge of the current failure status of
the other nodes in the system, so the protocols

 3

cannot make decisions based upon this
classification.

The protocols must make use of local
knowledge about the fault status. Each FCR in the
design will maintain a local determination of which
FCRs are trusted. Only information from trusted
FCRs will be considered during a vote. For the
protocols to work properly, a good FCR's local
view of which nodes to trust must satisfy the
following properties:
1. Good nodes always trust other good nodes
2. When a vote function is computed, no good

node trusts any benign-faulty node
3. If FCR i is not asymmetric-faulty, then good

nodes agree on whether or not i is trusted

Static Schedule
The simplest solution to Requirement 1 is to

first use a static communication schedule for the
ROBUS. The initial prototype uses a round robin
schedule where each PE has equal access to the
ROBUS. However, all analysis is based upon the
weaker assumption that all nodes agree on the
communication schedule. This will allow us to
explore dynamic scheduling algorithms for later
instances of the SPIDER architecture.

Interactive Consistency
Since the ROBUS must have internal

redundancy to achieve the reliability requirements,
we also need an interactive consistency protocol to
satisfy requirement 1. In a redundant computer
system, it is necessary to ensure that all single-
source data items are consistently replicated among
the redundant computational elements. Otherwise,
a single faulty source may be able to overwhelm the
system. There are several published algorithms for
ensuring interactive consistency; the first fully
general solution is by Pease et al [3]. Interactive
consistency requirements are:

Agreement -- All non-faulty receivers agree
on the single source data value received

Validity -- If the originator of the data is
non-faulty, then all non-faulty receivers
receive the transmitted value

Protocols that satisfy these requirements
assume that the participants are synchronized within
a known skew.

Clock Synchronization
Requirement 2 demands a fault-tolerant clock

synchronization protocol for the ROBUS. The
general requirements for clock synchronization are:

Precision---There is a small constant d such
that for any two clocks that are good at real
time t: |C1(t)-C2(t)| < d

Accuracy---All good clocks maintain an
accurate measure of the passage of time

These properties are sufficient to ensure the

ROBUS satisfies requirement 2.

Many synchronization protocols are round-

based. The participants in the protocol periodically
exchange clock readings to compute an adjustment
for the next round. For such protocols, two
conditions are sufficient to ensure precision and
accuracy.

Bounded Delay---All good clocks start each
round, k, within a bounded duration of real
time

Bounded Adjustment---There is an upper
bound on the magnitude of the adjustment a
good clock makes in a round

Bounded delay merely means that the net

effect of all the computed adjustments maintains the
precision of the system. Bounded adjustment
preserves the accuracy of the synchronized clocks.
The adjustment bound should be significantly less
than the duration of a round.

Diagnosis
Algorithms for clock synchronization and

interactive consistency may be designed to operate
correctly under several different fault-assumptions.
In order to meet requirement 3, the ROBUS will
support distributed diagnosis algorithms. For
diagnosis to be useful, we require all good nodes to
agree on the results of the diagnosis protocol. This
will be ensured by exchanging the diagnostic data

 4

using the interactive consistency protocol. The role
of a diagnosis algorithm is to identify failed nodes
within the system. The goal of a diagnosis
algorithm is to ensure the following properties:

Correctness---Every FCR diagnosed as
faulty by a good FCR is indeed faulty

Completeness---Every faulty FCR is
eventually diagnosed as faulty

If the fault model includes Byzantine

(asymmetric) faults, it is impossible to guarantee
both of these properties [4]. There always exist
fault scenarios where it is known that there is a fault
in the system, but it is impossible to identify
precisely which FCR is faulty. In such cases, either
correctness or completeness must be sacrificed. If
correctness is sacrificed, then some good nodes may
be declared faulty and removed from the system.
If completeness is sacrificed, then actively faulty
nodes may remain in the system. The choice of
which property to guarantee is open to debate. For
the ROBUS we have chosen to ensure correctness
and make the diagnosis as complete as possible.

ROBUS Conceptual Design

ROBUS Topology
The ROBUS consists of a collection of N Bus

Interface Units (BIUs) and M Redundancy
Management Units (RMUs) connected as a
complete bipartite graph KN,M. The N BIUs will
each have a bi-directional link to a single
processing element (PE). A ROBUS consists of N
+ M distinct fault containment regions, one for each
BIU and RMU. An implementation may choose to
include a PE in the same FCR as its associated BIU,
but this is not required. The choice of whether to
combine a BIU and PE in a single FCR is guided by
the reliability model. A PE may contain
substantially more hardware than a BIU. If so, its
failure rate will dominate the BIU failure rate. We
may be able to ensure better system reliability if the
BIU and PE are in separate FCRs.

The topology of the communication structure

for a SPIDER with a ROBUSN, M is shown in Figure
3.

PE 1

PE 2

PE 3

PE N BIU N

BIU 3

BIU 2

BIU 1

ROBUSN,M

RMU M

RMU 2

RMU 1

Figure 3: SPIDER Architectural Structure

According to the global fault model, we can
partition the BIUs into four disjoint sets based upon
their fault classification. Let GB denote the good
BIUs, BB the benign faulty BIUs, SB the
symmetric faulty BIUs, and AB the asymmetric
faulty BIUs. We similarly partition the RMUs. Let
GR denote the good RMUs, BR the benign faulty
RMUs, SR the symmetric faulty RMUs, and AR the
asymmetric faulty RMUs. The maximum fault
assumption for the ROBUS protocols is:

1. |GB| > |AB| + |SB|
2. |GR| > |AR| + |SR|
3. |AR| = 0 or |AB| = 0

These fault combinations will determine the

death states in the SURE reliability model. The
critical path in the reliability model will be due to
fault assumption 3. We can easily add enough
redundancy to make the probability of ROBUS
failure due to fault assumption 1 or 2 insignificant.

Reliability Models
The ROBUS protocols are designed to work

whenever the above fault assumptions are satisfied.
We have developed an ASSIST script to generate
SURE models for various ROBUS configurations.
The SURE program computes bounds on the
solution of a (semi) Markov model. In addition to
SURE, the programs PAWS and STEM compute
exact solutions of Markov models. The programs

 5

SURE, PAWS, and STEM all use the same input
format.

The reliability models for the ROBUS
calculate the probability that any of the three fault
assumptions are violated for a given duration
mission and hardware fault arrival rate. Since the
design is in a conceptual stage, we are using generic
order-of-magnitude approximations for the fault
arrival rates.

The ASSIST script prompts for the number of
BIUs and RMUs and then generates a user-
modifiable SURE model. The SURE user must
specify the percentage of faults that are benign or

symmetric for both the BIUs and the RMUs.
Additionally, the SURE user may provide
diagnostic coverage probabilities for each class of
symmetric and asymmetric faults. Finally, the user
may specify a recovery rate for the diagnosable
faults. The only recovery mechanism included in
the model is graceful degradation. Faulty units that
are correctly diagnosed are removed from the
system. The model does not include recovery from
transient faults. All faults are assumed permanent.
We intend to add transient faults in the future. The
following table enumerates the parameters for the
generated model:

Table 1: Parameters for the Reliability Models

Parameter Description Default
λB BIU Fault Arrival Rate 10-6/hour
λR RMU Fault Arrival Rate 10-6/hour

Time Duration of Mission 10 hours
BB Probability that a BIU fault is benign 0
SB Probability that a BIU fault is symmetric 0
AB Probability that a BIU fault is asymmetric 1 - (BB + SB)
BR Probability that an RMU fault is benign 0
SR Probability that an RMU fault is symmetric 0
AR Probability that an RMU fault is asymmetric 1 - (BR + SR)
DSB Probability that a symmetric BIU fault is diagnosable 0
DAB Probability that an asymmetric BIU fault is diagnosable 0
DSR Probability that a symmetric RMU fault is diagnosable 0
DAR Probability that an asymmetric RMU fault is diagnosable 0
α Rate of diagnosis and reconfiguration (for all diagnosable faults) 1/second

J,K

JλBBB

JλBSBDSB

JλBSB (1-DSB)
JλBABDAB

JλBAB (1-DAB)

KλRBR

KλRSRDSR

KλRSR(1-DSR)
KλRARDAR

KλRAR(1-DAR)

…

…

Reconfiguration
Transitions

Fault
Arrival
Transitions

α α

Figure 4: Transitions in ASSIST Model

The default failure rate is based on historical
failure rates for a single VLSI device. In Kopetz
([5], page 121), the failure rate for a high quality
chip is claimed to be better than 10-7/hour.

Figure 4 shows the transitions generated by the
ASSIST script when the system is in a state with J
good BIUs and K good RMUs. The fault arrival
transitions cover the various possibilities when a
new fault arrives. If there are any diagnosable
faults present in the current state, then appropriate
reconfiguration transitions are generated. The only
reconfiguration strategy is graceful degradation.
After a non-benign fault is diagnosed, the protocols
can ignore it. Reconfiguration is modeled by
converting diagnosed faults to benign faults.

The ASSIST script has been validated both by
hand inspection and by solving the generated model
with parameters set to extreme cases. These

 6

examples are easy to check by hand using either the
algebraic SURE bounds [6] or combinatorial
analysis.

Interactive Consistency Protocol
The Interactive Consistency (IC) protocol is

designed to satisfy requirement 1. If all
communication uses this protocol, then all good
Processing Elements will observe the same
sequence of data. This protocol is also used to
reliably exchange diagnostic data among the good
nodes within the ROBUS.

For the Interactive Consistency protocol, we
assume that all FCRs are synchronized within a
known skew and that the implementation can avoid
adverse effects due to this skew. Also, every FCR
knows the communication schedule. An informal
description of the protocol is as follows:

1. PE j transmits its message v to BIU j, in

accordance with the agreed schedule
2. BIU j broadcasts v to all RMUs
3. For each RMU k, if RMU k does not receive a

correctly formatted message from BIU j, then it
broadcasts source error to all BIUs, otherwise
it broadcasts the value vk to all BIUs

4. Each BIU collects the values received (v1 , …,
vM). If a BIU does not receive a correctly
formatted message from RMU k, it removes
RMU k from its set of trusted RMUs

5. Each BIU determines if there is a majority
among the values received from the trusted
RMUs

6. If BIU l determines that a majority of trusted
RMUs sent the same value vmaj, BIU l transmits
vmaj to PE l. Otherwise, BIU l transmits no
majority to PE l

Theorem: This protocol satisfies both Agreement
and Validity assuming the maximum fault
assumption holds.

Proof of Agreement: There are two cases to
consider,
Case 1: |AR| = 0

Since there are no asymmetrically faulty
RMUs, all good BIUs agree on which RMUs to
trust. All good BIUs receive the same vector of
values in step 4. Thus, in steps 5 and 6, each good

BIU will determine the same value to forward to its
PE.
Case 2: |AB| = 0

In this case, the BIU broadcasting in step 2
cannot be asymmetrically faulty, so all good RMUs
will broadcast the same value in step 3. Fault
assumption 2 ensures that there are more good
RMUs than the combined total of asymmetric faulty
and symmetric faulty RMUs. Since every benign
faulty RMU is manifest-faulty to every good BIU,
all benign faulty RMUs will be ignored. The good
RMUs form a majority, so the value they broadcast
in step 3 will be the same as the value transmitted to
the PEs in step 6.

Proof of Validity: Validity follows immediately
from the proof of Case 2 for Agreement.
• If BIU j is good, then all good RMUs will

correctly forward its value in step 3
• If BIU j is benign faulty, then all good RMUs

will broadcast source error in step
• If BIU j is symmetric faulty, then all good

RMUs will forward the value received in step 3

There is a useful corollary to Validity that will

aid in diagnosis.

Corollary: If a good BIU receives invalid data (i.e.
source error or no majority) as a result of executing
the Interactive Consistency protocol, then the
originating BIU is faulty.

By a symmetric argument, we can use the

same protocol (steps 2 through 5) to exchange data
between RMUs. This capability is needed to
exchange diagnostic information.

Diagnosis Protocol
The ROBUS diagnosis protocols are based on

the MAFT approach to on-line diagnosis presented
by Walter, et al [7]. The MAFT protocol can be
abstractly subdivided into two phases: local
diagnosis and global diagnosis. In the local
diagnosis phase, each node monitors the behavior of
all other nodes. From these observations, it
constructs an error syndrome that identifies those
nodes that it believes to be faulty. The global
diagnosis phase consists of an interactive
consistency exchange to reliably distribute the
accusations followed by a voting step to make a

 7

globally consistent decision based upon the set of
all local accusations.

In the MAFT architecture, all nodes are
identical and the nodes are completely connected.
In the ROBUS, there are two different kinds of
nodes, the RMUs and the BIUs. In addition, there
are no direct links between a pair of BIUs or
between a pair of RMUs. The global diagnosis
phase had to be modified to accommodate the
ROBUS characteristics. For the ROBUS protocol,
there are several levels of diagnostic information:
1. Suspicions: Node k suspects nodes i and j when

it knows that at least one of i or j is bad, but
does not have sufficient information to accuse
either

2. Accusations: Node k accuses node j when it
has sufficient evidence to conclude that node j
is faulty

3. Declarations: Node k declares node j to be
faulty when it knows that all good nodes of the
same kind as k have sufficient evidence to
conclude that j is faulty

4. Convictions: A node is convicted when all
good nodes have declared it faulty

The principal distinction between accusations

and declarations is that accusations only depend
upon local knowledge, but declarations depend
upon common knowledge. This common
knowledge is a side effect of the protocols. We can
now make precise the notion of trusted nodes as
employed by the IC and Synchronization protocols.

A node is considered trusted if it has not been
accused, declared, or convicted. The voting
functions in the IC protocol and the synchronization
protocol only consider messages from trusted
sources.

A node is considered undeclared if it has not
been declared or convicted. This classification is
needed for some of the votes employed by the
diagnosis protocol.

For the diagnosis protocol to work, all
accusations must satisfy the following property:

 If node k accuses node j, then at least one

of node k or node j must be faulty

A direct consequence is the following

property:

If any good node accuses node j, then node
j is faulty

This ensures that every good node is trusted by

all good nodes. We also require that, at the time of
any vote, no benign-faulty node be trusted by any
good node. Finally, we allow good nodes to
disagree concerning asymmetric faulty nodes, but
we require that they agree on whether to trust
symmetric-faulty nodes.

There are several ways for a node to make an
accusation. These include both direct error
checking by the receiving node and sufficient
disagreement with voted results. Suspicions against
node k are promoted to accusations when it is
known that k is suspected in conjunction with at
least one good node.

A node may make a declaration in at least two
ways. First, the interactive consistency protocol
provides partial diagnostic information. If the result
of an interactive consistency exchange is any sort of
error, then all good receiving nodes know that the
originator is faulty. In this case, since all good
nodes know the source is faulty, they all declare the
source faulty. The second mechanism for making
declarations is based upon distributed diagnostic
information. If there is sufficient evidence in a
consistent set of accusations to conclude that a node
is faulty, then that node is declared faulty. A set of
accusations is consistent if all good nodes (of the
same kind) agree on the contents of that set of
accusations. There is sufficient evidence to
conclude that a node is faulty if it accuses itself or if
it is accused by a majority of undeclared nodes.

The ROBUS diagnosis protocol is as follows:

1. All nodes gather accusations against all other
nodes

2. All nodes gather declarations based on the
properties of the interactive consistency
protocol

3. The BIUs periodically exchange their
accusations with all other BIUs using the
interactive consistency protocol. If a majority
of undeclared BIUs accuse a node, that node is
declared faulty

4. The RMUs periodically exchange their
accusations with all other RMUs using the
interactive consistency protocol. If a majority

 8

of undeclared RMUs accuse a node, that node
is declared faulty

5. All BIUs broadcast their declarations to all
RMUs. The RMUs perform a majority vote of
the declarations received from trusted BIUs

6. All RMUs broadcast their declarations to all
BIUs. The BIUs perform a majority vote of the
declarations received from trusted RMUs

7. Any node declared faulty by either a majority
of trusted BIUs or a majority of trusted RMUs
is convicted

8. The BIUs forward the list of convicted nodes to
the PEs

Since the current system is designed using the

assumption that all faults are permanent, any node
that is convicted is permanently isolated from the
rest of the system. The protocol is being modified
to remove this assumption.

Formal proofs of the distributed diagnosis
protocol are described in [8].

The protocol ensures that:
• Every declared node is convicted
• Every benign faulty node is declared
• Every symmetric faulty nodes accused by

some good node is declared
• Every node accused by a trusted majority

of nodes is declared
Both the distributed diagnosis and interactive

consistency protocols are synchronous. It is
essential that the inherent asynchrony between any
pair of nodes be bounded. Further, the design must
ensure that the relative skew be masked.

Clock Synchronization
The SPIDER clock synchronization protocol is

an event-based protocol. Periodically, good clocks
will generate events indicating that it is time to start
the next round. The protocol is designed to ensure
that the events generated by good clocks are echoed
in such a way that all good clocks will reset within
a short time of each other. The duration of a round
is approximately P ticks. An informal description
of the protocol follows:

RMU:

Process 1: When time to resynchronize for
round k, broadcast (init, k) to all BIUs

Process 2: If Accept?(echo, k) then broadcast
(echo, k) to all BIUs and reset counter for
round k

BIU:
Process 1: If Accept?(init, k) then broadcast
(echo, k) to all RMUs

Process 2: If Accept?(echo, k) then reset
counter for round k (and transmit reset to PE)

The fault-tolerance is in the definition of

function Accept?. It selects the middle event from
the trusted sources. The times to resynchronize and
values for resetting counters are selected to
accommodate the inherent communication delays.

Communication between independently
clocked synchronous systems is necessarily
imprecise. If a node sends a message at time t, it
will be received by all good nodes during the time
interval [t + d, t + d + e]. Here d denotes the
minimum communication delay and e is a bound on
the error. The dominant source of error is due to
discretization; e is always larger than the duration
of one clock tick. Other factors that contribute to
this error term are jitter, drift, and slight differences
in communication delay due to various causes (e.g.
temperature effects, differences in wire length, etc.).

Lemma: All good RMUs reset their clocks within
2e of each other.

Proof: There are two cases.
Case 1: |AB| = 0

In this case, the echo broadcast events
generated by BIU process 1 are totally ordered. All
good RMUs will accept in response to (essentially)
the same event. The relative time difference that
two good RMUs can observe this event is bounded
by e.
Case 2: |AR| = 0

In this case, the init events generated by the
RMUs are totally ordered. All good BIUs will
accept init (and broadcast echo) within e of each
other. Since accept is bounded by good events, e is
the maximum skew effect an asymmetric fault can
have. Adding another e for the inherent
imprecision in communication ensures that all good
RMUs will accept within 2e of each other.

 9

A symmetric argument bounds the separation
of good BIUs. The separation of any BIU/RMU
pair is bounded by 3e leading to the following
result:

Theorem: The synchronization protocol satisfies
bounded delay.

The protocol also guarantees bounded

adjustment, thus leading to:

Theorem: The synchronization protocol guarantees
precision and accuracy.

Informal proofs of these properties can be

found in [9]. Machine checked proofs are in
progress.

ROBUS Architecture
The ROBUS consists of two primary design

elements: the BIU and the RMU. The block
structure of these devices is presented below.

BIU Block Model
The block structure of a BIU is depicted in

Figure 5. There are several functional blocks. The
Input Unit is responsible for de-skewing data
messages, and accusing any source that transmits an
invalid message. It also directs all synchronization
messages to the Synchronization Unit. The Route
& Vote unit performs the core functions of the
interactive consistency protocol. It either relays
messages or votes results. The Synchronization
Unit implements the event voter needed for the
synchronization protocol. When enough
synchronization messages have arrived, it signals
the Control Unit to take appropriate action. The
Diagnostics Unit maintains all of the diagnostic
state information. It generates a vector of trusted
sources based on the current accusations,
declarations, and convictions. It also performs the
voting required in the diagnosis protocol. The
Output Unit selects the appropriate source for the
next broadcast message. The Control Unit realizes
the steps of all of the ROBUS protocols and
maintains the schedule and timer. Finally, the PE
Interface manages communication with the attached
PE.

.

 1. Input_Enable(1..M)

 2. Expected_Format

 3. Receive_Window_Size

 4. Synchronization_Reset

 5. Accept_Init

 6. Accept_Echo

 7. Route_Or_Vote

 8. Route_Select

 9. PE_Output_Select

10. PE_Input_Enable

11. PE_Receive_Window_Size

12. Diagnostic_Data_Select

13. Diagnostic_Resolve

14. Diagnostic_Accumulate

15. Exchange_Mode

16. Message_Source

17. Output_Select

18. Vote_Error(1..M)

19. Input_Error(1..M)

20. Synchronization_Error(1..M)

21. Active_Sources(1..M)

22. Data(1..M)

23. Synchronization_Event(1..M)

24. Route_Vote_Data

25. Diagnostic_Data

26. PE_Data

Input Unit

Message_In (from RMUs) Strobe_In
1 M

Synchronization
UnitRoute & Vote

 Unit

Diagnostics
 Unit

BIU
Control

 Unit

Output Unit

Message_Out (to RMUs) Strobe_Out

4

7

6

8

1
1

1
314
1
51
6

17

22 23

21 2018 19

25

24

PE
Interface

Unit

9

26

1
0

5

1
2
3

1 M

1
2

PE_Message_Out

PE_Strobe_In

PE_Strobe_Out
PE_Message_In

Figure 5: BIU Block Model

RMU Block Model
The block structure of the RMU design is

depicted in Figure 6. Its structure is quite similar to
the BIU. The main difference is that the RMU does
not have an interface to the PE. The operation of
the Control Unit is also different, due to the
differing roles in the protocols.

Input Unit

1 N

Synchronization
UnitRoute & Vote

Unit

Diagnostics
 Unit

RMU
Control

 Unit

Output Unit

4

6

5

7

8
9
10
1
112

13

18 19

17 1614 15

21

20

 1. Input_Enable(1..N)

 2. Expected_Format

 3. Receive_Window_Size

 4. Synchronization_Reset

 5. Accept_Echo

 6. Route_Or_Vote

 7. Route_Select

 8. Diagnostic_Data_Select

 9. Diagnostic_Resolve

10. Diagnostic_Accumulate

11. Exchange_Mode

12. Message_Source

13. Output_Select

14. Vote_Error(1..N)

15. Input_Error(1..N)

16. Synchronization_Error(1..N)

17. Active_Sources(1..N)

18. Data(1..N)

19. Synchronization_Event(1..N)

20. Route_Vote_Data

21. Diagnostic_Data

Message_In (from BIUs) Strobe_In

Message_Out (to BIUs) Strobe_Out

1
2
3

1 N

Figure 6: RMU Block Model

Verification Issues
We are developing the ROBUS in accordance

with guidance found in RTCA DO-254. Since the
ROBUS is intended to support any aircraft function
whose failure would be catastrophic, the ROBUS is
being developed to design assurance level A.

 10

DO-254 requires that the design assurance for
any level-A device employ approaches found in
appendix B. Two of these are relevant to this
development.

The primary design-assurance strategy for the
ROBUS is the use of formal methods. The
application of formal methods is targeted to early
life-cycle application. The emphasis is upon formal
proof of the critical fault-tolerance protocols. We
have complete machine-checked proofs of the
interactive consistency protocol and the distributed
diagnosis protocol. These proofs are described in
detail by Geser and Miner [8]. The formal
verification of the synchronization protocol is
incomplete. The main properties have been
checked, but there is still a need to put the pieces
together.

The other relevant strategy from DO-254
appendix B is the use of elemental analysis. We
have selected the TransEDA tool VN-cover to
support this analysis, but have not yet carried out
this verification exercise. Our preliminary analysis
indicates that coverage of VHDL code using
Focused Expression Coverage is mathematically
equivalent to MC/DC coverage.

Concluding Remarks
In this paper, we have presented a conceptual

design of a family of fault-tolerant architectures.
The SPIDER architecture provides a flexible
framework for building fault tolerant applications.
The primary mechanism for ensuring fault-
tolerance in the SPIDER family of architectures is
the Reliable Optical Bus (ROBUS). The ROBUS
reliably provides several key fault tolerant
capabilities. It provides an interactive consistency
protocol to enable reliable communication in the
presence of arbitrarily malicious failures. It
provides consistent diagnostic information so all
nodes can make consistent reconfiguration
decisions. Finally, it provides an underlying fault-
tolerant synchronization mechanism to provide a
reliable time source, and provide a means to
construct synchronous protocols on top of the
ROBUS. These protocols have been formally
verified to provide the greatest possible assurance
that they are correct.

The SPIDER protocols all have very simple
descriptions. However, their interactions are quite
complex. We have presented a block model
illustrating one hardware realization of these
protocols. This design has been implemented on a
laboratory prototype and testing is currently in
progress.

References
[1] Rushby, J., 2001, A Comparison of Bus
Architectures for Safety-Critical Embedded
Systems,
www.csl.sri.com/~rushby/abstracts/buscompare

[2] Kieckhafer, R. M., C. J. Walter, A. M. Finn, and
P. M. Thambidurai, 1988, The MAFT Architecture
for Distributed Fault Tolerance, IEEE Transactions
on Computers, 37 (4), 398-405.

[3] Pease, M., R. Shostak, and L. Lamport, 1980,
Reaching Agreement in the Presence of Faults,
Journal of the ACM, 27 (2), 228-234.

[4] Shin K, and P. Ramanathan , 1987, Diagnosis of
Processors with Byzantine Faults in a Distributed
Computing System. In 17th Fault-Tolerant
Computing Symposium, 55-60.

[5] Kopetz, H., 1997, Real-Time Systems: Design
Principles for Distributed Embedded Applications,
Kluwer Academic Publishers, Boston.

[6] Butler, R. W., and A. L. White, 1988, SURE
Reliability Analysis: Program and Mathematics,
NASA Technical Paper, 2764.

[7] Walter, C. J., P. Lincoln, and N. Suri, 1997,
Formally Verified On-Line Diagnosis, IEEE
Transactions on Software Engineering, 23 (11),
684-721.

[8] Geser A, and P.S. Miner, 2002, A Formal
Correctness Proof of the SPIDER Diagnosis
Protocol. In: Carreno V., Munoz C., and Tahar S.,
eds. Track B Proceedings of the 15th International
Conference on Theorem Proving and Higher Order
Logics, 71-86.

[9] Miner, P.S., M. Malekpour, and W. Torres-
Pomales, 2002, ROBUS Conceptual Design, NASA
Technical Memorandum (To Appear), Hampton,
VA.

